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A new method for assessing the similarity of material compositions is described. A similarity measure is
important for the classification and clustering of compositions. The similarity of the material compositions is
calculated utilizing a data-mined ionic substitutional similarity based upon the probability with which two ions
will substitute for each other within the same structure prototype. The method is validated via the prediction
of crystal structure prototypes for oxides from the Inorganic Crystal Structure Database, selecting the correct
prototype from a list of known prototypes within five guesses 75% of the time. It performs particularly well on
the quaternary oxides, selecting the correct prototype from a list of known prototypes on the first guess 65% of
the time.
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I. INTRODUCTION

Growing materials databases and the availability of more
computational power have lead to considerable development
in computational materials design.1,2 Expanding databases
of materials knowledge necessitates developing methods to
organize such knowledge. For instance, the Inorganic Crystal
Structure Database (ICSD) now contains 161 030 entries.
Given a promising compound with certain properties, how
can we systematically search for similar compounds? Such
a definition of similarity must be with respect to a given
property; in this paper, we develop a similarity function
between two compositions that reflects the likelihood with
which two compounds will have the same crystal structure.

Traditionally, materials scientists have relied upon struc-
ture mapping methods combined with heuristic design rules
derived from the physical properties of individual ions to
predict the structure of novel materials. For example, the
Hume-Rothery rules relate the ratio of valence electrons per
atom to the crystal structures formed,3 while the Pauling
rules relate the structure of ionic materials to the radii of the
ions involved,4 and Pettifor maps demonstrate clustering of
similar crystal structures in a space where the coordinate of
each element is simply related to its position in the periodic
table.5 Miedema et al. related the electron concentration at the
boundary of a Wigner-Seitz cell to the formation enthalpy of
binary metallic systems.6 While these methods provide some
physical insight, their predictive quality is limited,7 and no
obvious extension of these methods exists to make them more
accurate or extend them to higher component systems.

Modern structure prediction methods may involve an
unbiased search through the vast space of possible atomic
arrangements;8–12 others use chemical knowledge, including
geometric data such as expected bond lengths,13 secondary
building units,14 and structure prototype databases in conjunc-
tion with thermodynamic data15 to reduce the search space.
The problem with modern structure prediction methods is that
they require a large number of energy evaluations, making
them costly.

Motivated by Pettifor’s structure maps, which displayed a
correlation between ions with a similar Mendeleev number
and the binary structure prototypes in which they formed,
we generalize Pettifor’s idea to incorporate information from

not only binary, but ternary, quaternary, and more complex
compounds. Following the ideas of Hautier et al.,16,17 we use
a data-mined quantitative likelihood with which two ions will
substitute for each other within the same prototype to develop
a composition similarity function. This composition similarity
function has the advantage over traditional, heuristic methods
that it is general: any two compositions, regardless of the
number or identity of the components, can be compared to each
other. Indeed, knowledge gleaned from the binary and ternary
systems is used to inform our knowledge of the quaternary
and more complex systems. This generality can be used to
impart a distancelike structure to the database of knowledge,
clustering together compounds of similar composition. The
composition similarity function has the advantage of speed
over that of modern structure prediction methods; informed
by knowledge gleaned from current structure databases,
composition similarity correctly classifies a new composition
by selecting the correct prototype for an oxide structure from a
list of known prototypes within five guesses 75% of the time.

The search through the space of possible atomic ar-
rangements becomes much more difficult when considering
complex materials, such as the quaternary oxides. This vast,
sparsely sampled search space, with its enormous number
of combinatoric possibilities, represents a rich area for the
development of new materials. We present, in this paper, com-
position similarity, a data-mined function on the composition
of a material that uses chemical knowledge from binary and
ternary compounds and successfully applies it to quaternary
structure prediction. Data mining across not only structural
but also chemical similarity allows us to counteract the
sparsely sampled nature of the space of quaternary materials;
indeed, when limited to the quaternary subset of the oxides,
composition similarity correctly selects the correct prototype
from a list of known prototypes on the first guess 65% of the
time.

II. METHODS

We begin with a few definitions. A composition is a set
of ions and the associated ratios in which they appear. A
crystal structure is given by a lattice and a basis of ions
that decorates it; a crystal structure describes an infinite
arrangement of ions in three-dimensional (3-D) space. By
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definition, the information given in a crystal structure includes
the composition. A structure prototype is given by a lattice
and an anonymized basis of ions that decorates it. A prototype
contains information about the ratios in which differing ions
appear, and their arrangement in 3-D space but not the
identities of the ions involved. We use the word compound
to refer to a specific entry in the ICSD, which includes
information about the crystal structure of the compound, and,
by definition, the composition of the compound. For example,
the compound LiFePO4 appears in our database with the
composition Li+, Fe2+, P5+, 4 O2− in an olivine structure
prototype.

All compounds containing over 20% oxygen by ion count
in the ICSD 2012 were cleaned of peroxides, superoxides,
and high-temperature and high-pressure phases and duplicates.
Data cleaning details can be found in the Appendix. The final
oxide data set consisted of 5695 compounds. After cleaning,
the complete data set was randomly split into two sets for
cross-validation. The first set, called the training set, consists
of 95% of the compounds, representing the database of known
compounds to be data mined. The remaining 5%, called the test
set, mimics a set of as-yet-unseen compounds that we use to
evaluate the efficacy of composition similarity. We performed
the cross-validation process a total of five times.

In this section, we develop a similarity function between
two compositions. Note that similarity refers to a property
for which these compositions behave similarly. In this case,
that property is crystal structure. We begin by data mining
from the oxide training set an ionic substitution similarity
function between two ions, per Hautier et al.17 This function
grows with the probability of the two ions substituting for
each other within the same prototype within the database.
Finally, we use the ionic substitution similarity as an input
to the composition similarity function, defining a composition
similarity function via the best matching of ions in composition
c1 to ions in composition c2. The desired function should
increase monotonically from 0 to 1, with the probability
that the two compositions take the same prototype. It should
achieve its maximum value of 1 when the two compositions
are identical.

A. Ionic substitution similarity

In this section, a data-mined ionic substitution similarity
function Simion(i1,i2) between any two ions i1 and i2 that
satisfies the following constraints is developed:

(1) 0 � Simion(i1,i2) � 1 for all ions i1 and i2

(2) Simion(i1,i2) grows monotonically with the probability
that i1 and i2 substitute for each other within a given prototype.

We use a typical approach used in data mining of formu-
lating a model and then determining the parameters of the
model by requiring that the known data is reproduced with
maximum probability. Following the work of Hautier et al.,17

the probability with which two compounds X and X′ take
the same prototype is modeled as a function of the ion-ion
substitutions i = (i1,i2) required to map the crystal structure
of X onto that of X′:

p(prototype(X) = prototype(X′)) = e
∑

i λifi (X,X′)

Z
, (1)

where fi(X, X′), is a series of binary indicator functions:

fi(X,X′) =
{

1, if ion i1substitutes for ion i2

0, else
. (2)

The λi indicate the weight that is assigned to each feature
function fi(X, X′) and encapsulate the heart of the model;
ion-ion substitutions i that occur often are indicated by larger
values of λi , whereas substitutions that are rare are indicated
by smaller values of λi . Lastly, Z is the partition function
necessary to ensure that all the probabilities sum to 1.

This binary substitution model allows us to learn from our
database D the values of the weights λi for each substitution
i. Representing the prototyped database D as a set of pairs of
compounds that share the same prototype, the probability of
the data in the training set is

P ({(X,X′) ∈ D}) =
∏

(X,X′)∈D

e
∑

i λifi (X,X′)

Z
. (3)

Solving for the λi that maximize this probability is known
as calculating the maximum-likelihood model.18 For those λi

which correspond to unobserved substitutions, λi is set to −10.
Finally, letting Xi indicate the ith site of compound X, we

extract the probability p(b|a) of ion b substituting for ion a in
the same prototype, given that ion a is already known to exist
in that prototype:

p(b|a)

= p(X1 = a,X′
1 = b|prototype(X) = prototype(X′))

p(X1 = a)

(4)

= eλa,b

1 + eλa,b

1∑
j

e
λa,j

1+e
λa,j

, (5)

which leads naturally to the following proposed definition of
a symmetric similarity of ion a to ion b:

Simion(a,b)

= max(p(b|a), p(a|b)) (6)

= p(X1 = a,X′
1 = b|prototype(X) = prototype(X′))

min(p(X1 = a),p(X1 = b))
.

(7)

The ionic substitution similarity function is defined to be the
maximum of the two conditional probabilities to allow for
sampling deficiencies in the data set. For example, consider
the scenario in which ion a is rare and appears in only 1% of
the data set, ion b is common and appears in 50% of the data
set, and for every compound in which ion a appears, another
compound appears in the same prototype and composition,
only with ion b substituted for ion a. Choosing the minimum
of the two conditional probabilities penalizes the probability
of substitution because ion a is rare.

Using the similarity on the training set described above
yields the similarity shown in the image below. Specifically, it
shows the similarity of ion a to ion b for the 60 most common
ions in our data set.

Figure 1 shows an ionic substitutional similarity function
that is heavily weighted towards zero, with the vast majority
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FIG. 1. (Color online) Unscaled ionic substitutional similarity. The probability of ion a substituting for ion b within the same structure
prototype as given by the maximum likelihood model applied to the oxides in the ICSD.

of our values occurring below 0.30. Taking a logarithm and
rescaling our similarity linearly such that all values lie within
the interval [1, 0], we produce the following similarity between
ions.

This rescaled similarity, shown in Fig. 2, differentiates ion
substitution probabilities strongly, resulting in better structure
prediction, while still growing monotonically with increasing
probability of ionic substitution. As in previous work,17 we find
two areas with high substitution rates consistent with intuition.
The rare earths are clearly distinguished in the bright yellow
lower left-hand corner, and the transition metals, roughly in
the center of the diagram, also substitute with each other with
high probability.

B. Composition similarity

Given the ionic substitutional similarity above, it is now
possible to define a quantitative data-mined similarity rating
between two compositions. Calculating composition similarity
involves finding the best possible matching of the ions in one
composition to the ions in the other such that the average ionic
substitutional similarity between each pair is maximized.

A composition is defined as a set of ions {i} together
with the number of times each ion appears {n}. We represent
compositions by their reduced versions, where the reduced
version has the smallest integers {n} that preserve the correct
ratios between the ions. The sum �n of the number of ions in
the reduced composition is the total number of ions ntotal of a
given composition.

Given two compositions c1 and c2, we find the lowest
common multiple nlcm of n1

total and n2
total. We cap nlcm at a

maximum value of 100 to limit computational complexity.
Two sets of ions s1 and s2 of length nlcm are created by
enumerating the ions of c1 and c2 the appropriate number
of times. Searching through all the possible matchings (e1,e2)
of the ions e1 in s1 to the ions e2 in s2, the matching that
maximizes the average similarity of the two sets is found.
This maximal average similarity is defined as the composition
similarity between c1 and c2.

Simcomp(c1,c2) = max
all matching

∑
(e1,e2∈ matching) Simion(e1,e2)

nlcm

(8)

The composition similarity yields a rating between 0 and
1 for every pair of compositions c1 and c2, with identical
compositions having similarity 1. Based on data-mined values
for the probability with which each ion will substitute for
another within the same prototype, this composition similarity
provides a quantitative method to evaluate the likelihood with
which two compounds will form in the same prototype.

III. RESULTS

The ionic substitution similarity function was evaluated
based upon the compounds in the training set. Using the
ionic substitution similarity, composition similarities were
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FIG. 2. (Color online) Rescaled ionic substitutional similarity function. The probability of ion a substituting for ion b within the same
prototype, rescaled to better differentiate substitution probabilities.

calculated between every composition in the test set and every
compound in the training set. Finally, for each composition in
the test set, the compounds in the training set were ordered
by composition similarity. This cross-validation process was
completed with five different partitions of training and test sets;
here, we present the cumulative results from all five partitions.

A. A few examples

We begin by examining the behavior of clustering by
composition similarity upon three sample compounds from
the test set.

1. Example 1

Table I and Fig. 3 summarize the results of sorting by
composition similarity to Ca2FeWO6, which appears in the
test set in the double-perovskite crystal prototype. Ranking
the compounds in the training set by composition similarity
to Ca2FeWO6, we find that composition similarity begins by
finding compounds that differ by one ionic substitution per for-
mula unit. The first most similar compound substitutes Mo for
W, yielding Ca2FeMoO6, which forms in a distorted double-
perovskite prototype. The next two most similar compounds
are two polymorphs, Ca2NiWO6, forming in the distorted
double-perovskite prototype and an experimentally reported
prototype featuring square planar-coordinated Ni2+ ions. The
next two most similar compounds, Ca2MnWO6, Ca2MgWO6,
both form in the distorted double-perovskite prototype. Finally,

the next guess, Ba2FeWO6, representing a substitution of
two Ba2+ ions for Ca2+ ions per formula unit, appears in
two polymorphs; the distorted and perfect double-perovskite
prototypes. In this example, the composition similarity method
finds the correct structure prototype for the compound in
question on the third guess, though all guesses are structurally
similar to Ca2FeWO6.

2. Example 2

Table II below summarizes the results of sorting by
composition similarity to BaLa2Ti3O10, which appears in
the test set. The most similar compound in the training set
is La4Ti3O12, followed by La2Ti2O7. With the third guess,

TABLE I. Compounds with high composition similarity to
Ca2FeWO6. The first five compounds differ by one ion substitution
per formula unit; the second two differ by two substitutions per
formula unit.

Composition Prototype Similarity to Ca2FeWO6

Ca2FeMoO6 1 0.968
Ca2NiWO6 1 0.965
Ca2NiWO6 2 0.965
Ca2MnWO6 1 0.961
Ca2MgWO6 1 0.961
Ba2FeWO6 1 0.956
Ba2FeWO6 3 0.956
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FIG. 3. (Color online) Three crystal structure prototypes suggested by the composition similarity method for the crystal structure of
Ca2FeWO6. The first and third prototypes are both double perovskites, with the octahedron in the first prototype being slightly distorted. The
second prototype represents an experimentally determined polymorph of Ca2NiWO6.

composition similarity returns to the original stoichiometry
and finds BaPr2Ti3O10, which forms in the same prototype as
BaLa2Ti3O10.

3. Example 3

Table III and Fig. 4 below summarize the results of sorting
by composition similarity to a polymorph of DyMnO3 that
appears in the test set. The LnMnO3 structures, where Ln
is a lanthanide, form primarily in two structural prototypes: a
distorted orthorhombic perovskite and a hexagonal structure.19

The target compound in our training set forms in the distorted
orthorhombic perovskite structure, shown in Fig. 4.

Examining the results of ordering the test set by composi-
tion similarity shown in Table III, we find that the three most
similar compounds in the test set are polymorphs of DyMnO3:
two distorted versions of the distorted orthorhombic perovskite
structure and the hexagonal structure. Finally, composition
similarity substitutes Y for Dy, guessing two polymorphs of
YMnO3; the first polymorph is the tetrahedral arrangement,
and the second is the correct distorted orthorhombic per-
ovskite.

Again, composition similarity selects crystal structures that
have similar structural components. Three out of the first
four structures are remarkably similar distorted orthorhombic
perovskite structures; the last is a well-known polymorph of
DyMnO3. The final structure only differs from previous ones
by a slight shift in the placement of the central Dy3+ ion.

IV. APPLICATION TO STRUCTURE PREDICTION

To quantitatively assess the ability of composition similarity
to cluster compounds with similar structure, we consider the
application of composition to structure prototyping. For each

TABLE II. Compounds with high composition similarity to
BaLa2Ti3O10. The first two compounds have differing stoichiometry
than the target compound.

Composition Similarity to BaLa2Ti3O10

La4Ti3O12 0.973
La2Ti2O7 0.965
BaPr2Ti3O10 0.962

composition in our test set, we ask, in what structure prototype
would this compound form? We answer this question by
referring to the list of compounds in our training set, ordered
by similarity to the test set composition. Structure prototypes
are guessed from that list, progressing from the most similar
compounds downward, subject to the following rules:

(1) If a compound in the test set forms in a structure
prototype that is unrepresented in the training set, we do
not consider this compound, as it is impossible to guess this
structure prototype. Composition similarity does not have the
ability to suggest as-yet-unseen crystal structures.

(2) If the test set composition is a binary, ternary, or
quaternary or more complex composition, only appropriate
binary, ternary, or quaternary or more complex prototype
guesses are permitted, matching the number of chemical
components in the compound.

(3) No prototype is guessed twice.
(4) No training set compounds with the same composition

as the test set composition are considered. Recall that the
entire dataset, consisting of both test set and training set,
is constructed such that no two entries share the same
composition and prototype; such entries would be considered
duplicates. Thus, guessing compounds with the same com-
position would be by definition suggesting polymorphs with
incorrect prototypes.

In the following analysis, our structure prototype prediction
algorithm, the composition similarity algorithm, is compared
against a control in which the list of suggested prototypes is
ordered by the frequency with which these prototypes appear in
the training set, called the most common prototypes algorithm.

TABLE III. Compounds with high composition similarity to
DyMnO3. The first three are polymorphs of DyMnO3; they have
the same composition but differing structure. All five compounds
have similar crystal structures.

Composition Prototype Similarity to DyMnO3

DyMnO3 1 1.000
DyMnO3 2 1.000
DyMnO3 3 1.000
YMnO3 3 0.927
YMnO3 4 0.927
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FIG. 4. (Color online) Four structure prototypes suggested by the composition similarity method for the crystal structure of DyMnO3.
Numbers 1, 2, and 4 are all distorted orthorhombic perovskite structures. Structure prototype number 3 is a hexagonal crystal structure
commonly found in the LnMnO3 family, where Ln is a lanthanide.

Prototypes are guessed, subject to the same rules, from the
most frequently observed prototypes to the least. This is a sim-
ilar benchmark to what was used previously by Fischer et al.15

Figure 5 depicts the performance of crystal structure pro-
totyping via composition similarity aggregated across all five
cross-validated test sets. The horizontal axis depicts the prob-
ability with which the correct prototype is among our guesses
against the vertical axis, which depicts the number of guesses
made. The black line shows the performance of prototyping via
composition similarity. The dotted line shows the performance
of prototyping via the most common prototypes method.
Prototyping via composition similarity consistently outper-
forms prototyping via the most common prototypes method,
requiring a smaller number of guesses at every confidence
level. Overall, prototyping via composition similarity achieves
75% accuracy within five guesses. The correct prototype is
guessed within the first three guesses 67% of the time.

The strengths and weaknesses of composition similarity
become evident when the data is broken down by the number of

FIG. 5. Prototyping by composition similarity as applied to the
oxides in the ICSD. The black line shows the number of guesses
necessary to select the correct prototype by composition similarity.
The dotted line shows the number of guesses necessary if those
guesses were ordered by the frequency with which that prototype
appears.

components in the compound. Dividing the data set into groups
of binary, ternary, and quaternary or higher compositions, a
clear trend in favor of the prediction of more complex com-
pound prototypes emerges. Figure 6 below shows the number
of guesses necessary to find the correct prototype, broken down
by number of components in the compound, for prototypes
ordered via the composition similarity and most common
prototypes methods. The composition similarity rating fares
poorly in the binary compounds, performing comparably to the
most common prototypes method. Its performance improves
markedly in the ternaries, while the most common prototypes
method suffers from the large number (∼1100) of candidate
ternary prototypes. The trend continues into the quaternaries,
where the most common prototypes ranking fares remarkably
well, predicting the correct structure prototype out of over
1600 candidate structure prototypes on the first guess 65% of

FIG. 6. (Color online) Prototyping by composition similarity
broken down by the number of components in a compound. The
bold lines show the number of guesses necessary to select the correct
prototype by composition similarity. The dotted lines shows the
number of guesses necessary if those guesses were ordered by the
frequency with which that prototype appears. The performance of
composition similarity increases dramatically with the number of
components in a compound.

224107-6



DATA-MINED SIMILARITY FUNCTION BETWEEN . . . PHYSICAL REVIEW B 88, 224107 (2013)

the time, within two guesses 80% of the time, and within ten
guesses 90% of the time.

V. DISCUSSION

We have presented a data-mined, quantitative composition
similarity function that reflects the probability of two com-
positions taking the same crystal structure prototype. This
composition similarity function is obtained in two steps; the
first is to data mine an ionic substitutional similarity function
that reflects the probability that two ions will substitute for
each other within the same prototype. The second is to use this
ionic substitutional similarity to find the most similar matching
of the ions in two given compositions; the average similarity
of this matching is the composition similarity.

We have used structure prototype prediction as a means of
evaluating the efficiency with which composition similarity
groups similar compounds. Using composition similarity, we
ordered the oxides in a training set of over 4000 compounds
versus each compound in the test set. The compounds that
appear first on the ordered list represent the most similar
compounds to the test set compound in question. We have
shown that these most similar compounds are very likely to
share the same prototype as the test set compound. Addition-
ally, we have found that composition similarity orders the
possible prototype structures more effectively as the number
of components of the compound increases, finding the correct
prototype in remarkably few guesses.

The correlation between performance of composition sim-
ilarity and the number of components of the compound in
question can be attributed to the relative lack of prototypes
in the quaternary structures. While the binary compounds
contain only one nonoxygen ion and form in over 300 distinct
prototypes, the ternaries contain two nonoxygen ions and
form in 1100 prototypes, and the quaternaries contain three
nonoxygen ions and form in 1600 prototypes. Considering
the number of possible ionic combinations, with over 200
species of ions represented in our database, the number of
combinations grow 200-fold going from the binaries to the
ternaries and 4000-fold from the binaries to the quaternaries.
However, the number of prototypes the algorithm must order
in this data set grows far more slowly to the benefit of the
predictive ability of our algorithm. While there undoubtedly
exist ternary and quaternary prototypes that are as yet un-
represented in the ICSD—50% of the quaternary prototypes
in the test set were not represented in the training set—this
study shows that composition similarity takes advantage of
the higher ratio of ionic combinations to number of structural
prototypes available in a quaternary composition to better order
the current list of available prototypes. For those quaternary
prototypes that were represented in the training set, we
find the correct prototype on the first guess 65% of the
time.

We refer to example 2, in which we rank training set
compounds by their composition similarity to BaLa2Ti3O10

to highlight one of the weaknesses of composition similarity.
In this example, it takes composition similarity three guesses
to obtain the correct structure prototype. The first two guesses,
La4Ti3O12 and La2Ti2O7, exhibit starkly differing stoichiome-
tries from the desired compound, which would make them

unlikely candidates for sharing the same structure prototype.
However, because composition similarity is given by the
highest average chemical similarity between pairs of ions from
both compounds, high chemical similarity between a majority
of the ions can outweigh a few improbable substitutions.
Looking carefully at this example, it would seem improbable
for the ions from BaLa2Ti3O10 to map stoichiometrically onto
the ions of La4Ti3O12; however, taking the lowest common
multiple, the 16 ions per formula unit in BaLa2Ti3O10 and the
19 ions per formula unit in La4Ti3O12, we find our similarity
function is forced to compare 247 ions of each composition.
In this case, one of the O2− ions from BaLa2Ti3O10 must
eventually be mapped onto either La3+ or Ti4+, a rather
improbable substitution. However, with over 247 comparisons
in total, there are enough overwhelmingly good substitutions
to outweigh a few improbable ones.

In future work, it would be possible to address this
weakness through a simple algorithmic variation. The sub-
stitution of ions in differing charge states could be strictly
disallowed by automatically setting their similarities to −�.
Such a modification, while computationally straightforward
and physically meaningful, would also result in a loss of
information. The current algorithm data mines chemical
similarity, while allowing for multiple substitutions within
the same prototype; it is not uncommon for ions of differing
charge states to substitute for each other when accompanied
by another, simultaneous substitution, which offsets the charge
imbalance. The information gleaned from charge-imbalanced,
multiple-ion substitutions would be lost if we implemented
this variation.

Compared to other structure prediction algorithms, ordering
via composition similarity has distinct strengths and weak-
nesses. Unlike direct optimization search methods, composi-
tion similarity does not have the ability to predict new structure
prototypes that are not represented in current databases. Some
direct optimization search methods, for example, simulated
annealing, can attempt to systematically search through the
infinite-size space of possible structures given infinite time,
while composition similarity is strictly limited to searching the
data set at hand. However, composition similarity effectively
orders structure prototype candidates prior to any energetic
evaluation and is thus quite computationally cost-effective.
Furthermore, the growing efficacy of composition similarity
with the complexity of the compound makes structure pre-
diction via composition similarity much more attractive in
the quaternary or even quintenary compounds. We expect the
performance of composition similarity to improve as more
quaternary compounds are discovered.

Composition similarity has broader potential for application
than the example of prototype prediction discussed above.
The composition similarity function takes as its input any two
compositions and outputs a number that reflects the chemical
and structural similarity between them. Such a function is
useful with respect to the classification: we demonstrated
the performance of composition similarity when classifying
compounds by structure prototype. However, in a broader
sense, composition similarity is useful because it is an
effective clustering method, grouping together compounds
that are similar and providing a mechanism for the mapping
of composition space. Defining the distance between two
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FIG. 7. (Color online) Clustering of a sample set of 300 oxides from the ICSD by composition similarity.

compositions as one, the composition similarity, we now
have a semimetric that imposes a structure upon the space
of compositions. Note that this distance does not satisfy the
triangle inequality and thus is only a semimetric.

Figure 7 below shows a small sample set of 300 compounds
drawn randomly from the test set, clustered by composition
similarity. The vertical axis represents the distance between
two compounds or the largest possible distance between two
clusters. Identical compounds (SiO2) have distance zero. The
horizontal axis represents the clustering of similar compounds;
generally speaking, similar compounds will be drawn closer
to each other on the horizontal axis.

Figure 7 represents the ability of composition similarity
to provide structure to a well-explored but as yet relatively
unmapped space; the space of all compounds. It can form
a hierarchical grouping of similar compounds across all
chemistries, comparing binary compounds to ternaries and
quaternaries in a quantitative, physically meaningful way. We
suggest that the organizational value of composition similarity
may prove useful, allowing the designers of new compounds a
new mechanism by which to search for compositionally similar
compounds.

Finally, it is possible to extend the composition similarity
method such that it is no longer based upon structural
similarity. This paper describes a two-step algorithm; the
first part, following the work of Hautier et al.,17 data mines
an ionic substitutional similarity between two ions that
reflects the tendency of those ions to form within the same
structure prototypes. The second part describes how to use that

ionic similarity function to compute a composition similarity
function. Appropriately, we use the ionic similarity that reflects
the tendency to form within the same prototype to predict
crystal structure. However, the two parts are modular; the
derivation of composition similarity is independent of which
ionic similarity function is used. If the end goal were not
the prediction of crystal structure but another property, using
another ionic similarity function may prove more direct and
yield a better prediction.

VI. CONCLUSIONS

A data-mined composition similarity function that com-
bines both chemical and structural knowledge is presented.
Compounds with high composition similarity have similar
structures. In particular, composition similarity is particularly
efficacious at predicting structure prototypes of quaternary ox-
ides, an area in which the available data is notoriously sparse.
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APPENDIX: DATA CLEANING

All of the compounds in the ICSD 2012 were searched for
compounds that satisfied the following criteria:

(a) Compounds must be oxides, as indicated by at least
20% oxygen content by ion count.

(b) Compounds must not be peroxides or superoxides, as
indicated by O-O bond lengths L<1.50 Å.

(c) Compounds must not be marked high pressure, HP,
high temperature, or HT.

(d) Compounds must not have improbably short (<1 Å)
bond lengths.

(e) Compounds must not have a mismatch between the
reported composition and the ions given in the crystal structure.

(f) Compounds must not contain hydrogen. The reported
crystal structures of compounds containing hydrogen are often
unreliable.

The resultant oxides were sorted into structure prototypes
using an affine mapping algorithm.20,21 The data set was
further cleaned by removing duplicates, defined as com-
pounds with the same composition and the same struc-
ture prototype, resulting in a final data set of 5694 oxide
compounds.
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